

Fit in Mathe

Oktober 2013

Klassenstufe 12

Thema

Integrationsregeln

Berechne die folgenden Integrale

a)
$$\int_{1}^{3} 1 \, dx$$

b)
$$\int_{0}^{3} x \, dx$$

a)
$$\int_{0}^{3} 1 dx$$
 b) $\int_{0}^{3} x dx$ c) $\int_{0}^{3} x^{2} dx$ d) $\int_{0}^{3} x^{3} dx$

d)
$$\int_{0}^{3} x^{3} dx$$

Die Summe aller Werte ganzzahlig gerundet ist ___

Berechne unter Nutzung der Ergebnisse aus Aufgabe 1 die folgenden Integrale

a)
$$\int_{0}^{3} (x^3 + x^2 + 1) dx$$

b)
$$\int_{0}^{3} (x^3 - x^2) dx$$

a)
$$\int_{0}^{3} (x^3 + x^2 + 1) dx$$
 b) $\int_{0}^{3} (x^3 - x^2) dx$ c) $\int_{0}^{3} (x^3 - 4x^2 + 5x - 2) dx$ d) $\int_{0}^{3} \frac{x^2 - 1}{x + 1} dx$

d)
$$\int_{0}^{3} \frac{x^2 - 1}{x + 1} dx$$

Die Summe aller Werte ganzzahlig gerundet ist

8 Bestimme die Stammfunktion mit additiver Konstante 0 zu

a)
$$f(x) = 3 \cdot x^{-\frac{1}{2}}$$

b)
$$f(x) = 2 \cdot e^{0.5x}$$

a)
$$f(x) = 3 \cdot x^{-\frac{1}{2}}$$
 b) $f(x) = 2 \cdot e^{0.5x}$ c) $f(x) = \cos(\frac{x}{2})$ d) $f(x) = \frac{2}{2x+1}$

$$d) \quad f(x) = \frac{2}{2x+1}$$

Die Summe der konstanten Faktoren bei den gesuchten Stammfunktionen ist ____.

Bestimme mit Hilfe der Produktregel $(f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$ jeweils die Stammfunktion mit additiver Konstante 0.

a)
$$f(x) = 2x \sin(x) + x^2 \cos(x)$$
 b) $f(x) = (1+x) \cdot e^x$ c) $f(x) = 1 + \ln(x)$

$$f(x) = (1+x) \cdot e^x$$

$$c) \quad f(x) = 1 + \ln(x)$$

x taucht über alle Lösungsfunktionen summiert ____ mal als Faktor auf

Man kann die Produktregel in Aufgabe 4 auch so anwenden.

 $\int f'(x) \cdot g(x) dx = \int (f(x) \cdot g(x))' dx - \int f(x) \cdot g'(x) dx = f(x) \cdot g(x) - \int f(x) \cdot g'(x) dx$ Manchmal ist das letzte Integral einfacher zu lösen. Das Verfahren heißt die "partielle Integration". Finde so die Stammfunktion mit additiver Konstante 0 zu

a)
$$f(x) = x \cdot \sin(x)$$

b)
$$f(x) = x \cdot e^x$$

a)
$$f(x) = x \cdot \sin(x)$$
 b) $f(x) = x \cdot e^x$ c) $f(x) = (x+1) \cdot \ln(x+1)$ d) $f(x) = \ln(x+1)$

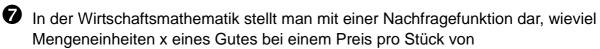
$$d) f(x) = \ln(x+1)$$

Die Summe der Beträge F(0) von allen gesuchten Stammfunktionen ist ____ .

6 Die Regel "Integrieren durch Substitution" resultiert aus der Kettenregel der Differentiation $(f(g(x)))' = f'(g(x)) \cdot g'(x)$. Anstatt den Summationsgrenzwertprozess über $(f'(g(x)) \cdot g'(x)) \cdot \Delta x$ zu führen, klammert man $f'(g(x)) \cdot (g'(x) \cdot \Delta x)$ nutzt $\Delta g(x) = g'(x) \cdot \Delta x$ und führt den Grenzwertprozess über $f'(g)\Delta g$ auf dem Intervall (g(a); g(b)) aus. Finde so die Stammfunktion von

Wer am Ende seiner Schulzeit alle "Fit in Mathe"-Aufgabenblätter eigenständig und erfolgreich bearbeiten kann, erfüllt unsere Erwartungen an die Mathematikkompetenzen unserer Studienanfänger. Die mathematischen Voraussetzungen für einen erfolgreichen Studieneinstieg an unserer Hochschule sind damit gegeben.

Fit in Mathe


Oktober 2013

Klassenstufe 12

a)
$$\ln(10) \cdot \int_{0}^{1} x \cdot 10^{-x^{2}} dx$$
 b) $\frac{1}{\ln(2)} \cdot \frac{1}{\ln(2)} \cdot \frac{1}{\ln(2)}$

a)
$$\ln(10) \cdot \int_{0}^{1} x \cdot 10^{-x^{2}} dx$$
 b) $\frac{1}{\ln(2)} \cdot \int_{0}^{1} \frac{2x}{x^{2} + 1} dx$ c) $\int_{0}^{\frac{\pi}{2}} \sin^{2}(x) \cos(x) dx$

Die Summe aller Werte ganzzahlig gerundet ist ____

$$p_{N}(x) = \left[\frac{Geldeinheiten}{St \ddot{u} c k}\right]$$
 nachgefragt werden.

Die Nachfragekurve soll die Form haben: $p_N(x) = 100 \cdot e^{-x}$, d.h. die Nachfrage setzt bei $100~[\frac{Geldeinheiten}{St \ddot{u} ck}]~$ ein und wird bei fallendem St \ddot{u} ckpreis entsprechend

größer. Der Umsatz ist die Fläche unter der Kurve.

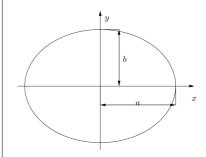
Bestimme den kleinsten Umsatz, der auch bei theoretisch unendlich wachsender Menge nicht überschritten wird.

Der gesuchte Wert ist

Lösungen mit Kennsilben

38	100	5	1,25	3	46	51	37	4	200	10	2	1,75	9
OP	RT	OM	ON	NI	AV	ER	KL	RK	ST	NK	ZE	PO	IE

Lösungswort:


8 (Expertenaufgabe)

Ein Ellipsoid ist eine räumliche Figur, die durch die Rotation einer Ellipse um eine Hauptachse entsteht. Lege ein xy-Koordinatensystem so, dass seine y-Achse mit der Rotationsachse übereinstimmt. Ein Schnitt durch die y-Achse ergibt als Querschnittsfläche eine Ellipse, deren Peripheriepunkte die Gleichung erfüllen:

$$\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = 1$$

Schneide dann den Ellipsoiden senkrecht zur y-Ach-se in Scheiben und führe einen Integrationsprozess über die Volumina der Scheiben durch.

Gib die Volumenformel für den Ellipsoiden an!

Wer am Ende seiner Schulzeit alle "Fit in Mathe"-Aufgabenblätter eigenständig und erfolgreich bearbeiten kann, erfüllt unsere Erwartungen an die Mathematikkompetenzen unserer Studienanfänger. Die mathematischen Voraussetzungen für einen erfolgreichen Studieneinstieg an unserer Hochschule sind damit gegeben.

